The Effects of Tropical Climate Stressor on Gamma Immunoglobulin Concentration of Serum and Colostrums of Dairy Cows of First and Second Parity

(Pengaruh Cekaman Iklim Panas terhadap Konsentrasi Imunoglobulin Gama Serum dan Kolostrum Sapi Perah Pariti Satu dan Dua)

IGKP Westra¹ and Wahyudi²

¹Faculty of Veterinary Medicine, Airlangga University
Kampus C Unair, Jl. Mulyorejo, Surabaya (60115), Indonesia
Tel. +62-031-5992785, Fax +62-031-5993015
²Animal Husbandry office of District of Pasuruan, East Java, Indonesia
Correspondence author e-mail: artsew@indo.net.id

Abstract. The new born dairy calves serum containing extremely low antibodies (Ig) or nothing at all. This means that their livability or mortality greatly depend on the antibody especially IgG of cow’s colostrums to sustain their passive immunity. An observation and analytical study was conducted to evaluate the effects of tropical climate stressor (TCS) on immunoglobulin gamma (IgG) concentration in three different climate locations in term of temperature (°C) and humidity (%). Those dairy farming locations were: (1) the cold or temperate climate in sub-district Tutur, (2) the moderate climate in sub-district Purwodadi and (3) the hot climate in sub-district Grati. Those three sub-districts are belong to District Pasuruan–East Java Province, Indonesia. For these purposes sample of 93 cows were determined using purposive sampling method and 29-33 blood samples (1.0 ml) of late pregnant cows (2–3 weeks pre partum) and colostrums samples (1.0 ml) from respective location were collected. Blood samples were measured for cortisol concentration (nmol/L) using radioimmunoassay (RIA) procedure and IgG serum and IgG kolostrum concentration (mg/ml) were measured using direct ELISA. The study was then set up to ensure factorial experimental design and conducted over summer season. SPSS for Window statistic program was applied to necessary statistical analysis. Results indicated: (1) Evidence of TCS significantly effected (P<0.05) the blood cortisol levels of the cows which was the lowest in the cold (22.28 mg/ml) and the highest in the moderate location (54.07 mg/ml), (2) TCS was also affected IgG serum concentration (P<0.05) the lowest in moderate climate (4.76 mg/ml) while between cold and hot climate was not different significantly, and (3) TCS did not decline concentration of IgG colostrums (P>0.05) but a tendency that IgG colostrums concentration in hot climate was the lowest. The results suggest that low level of IgG in hot and moderate climates as being critical and efforts must find out to elevate IgG colostrums concentration to provide adequate passive immunity and at the same time preventing calves mortalities.

Key Words: tropical climate stressor, cortisol, serum, colostrum, gamma immunoglobulin

Introduction

Colostrums is obviously needed by newborn calf, since it containing a lot of immunoglobulin (Ig) while calf doesn’t has mother’s antibodies at birth. So calf survival and morbidity rate is greatly depend upon the quality and the amount of colostrums produced by the cow and to passively transfer her immunity from the dam to her offspring (Arthington et al., 2000; Quigley et al., 2002)

There are varieties of Ig bovine colostrums such as Gamma Immunoglobulin (IgG₁ and IgG₂). IgA, IgM, IgD, IgE. Besides, colostrums is also containing growth factors, hormones, etc. The most abundant Ig in colostrums is IgG. This fraction is considered as a very important if not the only important part of the colostrums (Hammer et al., 2004).

More recent studies stated that many factors influencing Ig colostrums concentration such as genetic (breeds), climates, age, and parities (Morin et al., 1997 and Jaster, 2005). Colostrums from colder climate areas such as from New Zealand was better in respect to Ig concentration, than those colostrums produced

143
from cows in the hotter climate locations (Nardone et al., 1997). In relation to this finding, Moore et al. (2005) reported specifically that colostrum collected immediately after calving and early collection time may account for the high colostrum IgG concentration. Older cows and cows that have had more progenies were considered to produce better colostrums quality. In addition the quality of nutrition, especially at prepatum greatly determine the quality of colostrums (Arthington et al., 2000).

Epidemiologic studies (Hartwig, 1996), proved that calf mortalities 5.1-20.2% between 1-5 weeks and of those figure 60-70% occurred at the age 10 days. Risk rate (RR) for morbidity and mortality was reported from tropical country of Kuwait (in Midle east) was 0.59±0.35 and 0.38±28, respectively (Razzaque et al., 2009). In East Java (Indonesia), calf mortalities 3.88% of the total cows population, or around 12.09% (SD 5.99%) of the total birth per year (Wartomo, 1990). Rate of morbidity reported by Witjaksono, 1998, amount of 9.8% of the total birth per year. In addition, calves don’t have enough antibodies at birth, the high mortality and morbidity are also due to inadequate colostrums antibodies received by the calves during milking. This means that passive immunity is greatly determined by the adequacy of IgG colostrums from the dam.

Stressor is considered as any adverse condition or influence which tend to disrupt the normal, steady functioning of the body and its parts, and generally is adverse to its well-being (Nardone et al., 1997). Tropical climate is one of stressor on dairy Friesian cows generally being kept by farmers in Indonesia. The main element of climate that inducing stressed on dairy cows is daily high temperature in combination with high humidity (%). A stressed cow will be more suffered if the cow in late pregnancy. Physiological and biological consequence under heat stressor is the suppression immune system, mobilization of muscle and liver glycogen in order to sustain life and also shrinking thymus and lymphoid tissues. The suppression of immune system is caused by declining of lymphoid tissue activities and declining the number of lymphocyte B cells which is responsible to the production of antibody and T cells killer (Julie et al., 1998) This statement then in agreement with Lippolis (2008) stated that immune system is impaired under heat stress, especially neutrophil and lymphocyte functions.

So far cortisol, IgG serum and IgG colostrums concentration of late pregnant Friesian cows under tropical climate stressor (TCS) in Indonesia, have not yet understood accurately. Thus, the objectives of this study are to investigate the effects of TCS on IgG serum and IgG colostrums concentrations. This information is important and needed to provide adequate passive immunity to new born calves and minimize mortality.

Research Methods

Observational and analytical studies in combination with factorial model, were conducted to investigate the effects of tropical climate stressor (TCS) on IgG serum and IgG colostrums concentration of dairy Friesian in three different tropical climate locations (Wijaya, 2001). Climate (temperature and humidity) data were obtained from the office of Meteorology and Dairy Cooperative in District of Pasuruan, East Java.

Locations and Climate Characteristics

Three sub-district location highly populated with dairy cows were selected in District of Pasuruan (East Java-Indonesia). Climate characteristic of those locations are presented in Table 1.

Cows Samples

A total of 93 late pregnant cows (2-3 weeks before expected birth) was collected from farmers, so there were 31 cows sample of each sub-district. Purposive sampling method was applied to collect samples (Wijaya, 2001). Description of cow samples included: (a) age between 2.5-3.5 years old, (b) expected to have first (P1) and second calving (P2), (c) free from clinical sign of mastitis (d) having normal birth or without any assistance, and (e) their body condition score were about similar.

Variables

Research variables divided into two, including, independent variable comprised of: climate (a combination of temperature, °C and humidity, %) of each location. Dependent variables included: (a) blood cortisol hormone concentration, (b) blood (serum) IgG concentration and (c) IgG
colostrums concentration. In addition control over feed and feeding arrangement, water supply and type of cow houses were also conducted to minimize interfering variables.

Data Collection
Blood sample of 93 cows, or about 1.0 cc each, were taken out from auricular venous and collected in micro tube then divided by two parts. One part of 0.5 cc was examined to measure it’s IgG concentration using radioimmunnoassay procedure. In addition a total of 93 colostrums samples were also collected and analysis to measure the IgG concentration. Both examinations were conducted at Virology Laboratory Faculty of Veterinary Medicine, Airlangga University, Surabaya. The other part of 0.5 cc blood samples were examined to measure cortisol hormone concentration (nmol/L) using Direct Elisa method and conducted at Reproductive Health and Endocrinology Laboratory Dr Soetomo General Hospital, Surabaya (East–Java).

Statistic Analysis
Data were analysed by two–way analysis of variance with a model that included parameters locations (climates), cortisol hormone concentration, IgG serum concentration and IgG colostrums concentration either in first (P1) or in the second (P2) calving and their interactions. Linear regression by cortisol hormone was determined by the least squares method using GLM procedure SPSS 10 (Wijaya, 2001).

Results and Discussion
Table 2, shows mean of cortisol, IgG serum and IgG colostrums concentrations in three different climate locations.

Cortisol Concentration
Cortisol hormone concentrations in three locations are presented in Table 2.

Table 1. Climate characteristics of the three sub-district (locations) of observation

<table>
<thead>
<tr>
<th>No</th>
<th>Climate components</th>
<th>Name of sub-districts</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tutur (CCL)</td>
<td>Purwodadi (MCL)</td>
</tr>
<tr>
<td>1</td>
<td>High above sea level</td>
<td>700 – 2000 m</td>
<td>370 – 700 m</td>
</tr>
<tr>
<td>2</td>
<td>Daily temperature (°C)</td>
<td>16 – 25°C</td>
<td>20 – 28°C</td>
</tr>
<tr>
<td>3</td>
<td>Daily humidity (%)</td>
<td>50 – 70%</td>
<td>60 – 80%</td>
</tr>
<tr>
<td>4</td>
<td>Rain fall (mm/year)</td>
<td>3.650 mm</td>
<td>1.800 mm</td>
</tr>
</tbody>
</table>

Meteorology office of District Pasuruan
CCL = cool climate location, MCL = moderate climate location, HCL = hot climate location

Table 2. The effects of TCS on cortisol, IgG serum and IgG colostrums concentrations in three locations

<table>
<thead>
<tr>
<th>No</th>
<th>Variables</th>
<th>Locations (climates)</th>
<th>Remarks (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cool (CCL)</td>
<td>Moderate (MCL)</td>
<td>Hot (HCL)</td>
</tr>
<tr>
<td></td>
<td>(nmol/L)</td>
<td>(mg/ml)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Cortisol concentration</td>
<td>22.28 ±</td>
<td>54.07 ±</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10.48)</td>
<td>(11.57)</td>
</tr>
<tr>
<td>2</td>
<td>IgG serum concentration (mg/ml)</td>
<td>5.00 ±</td>
<td>4.76 ±</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.14)</td>
<td>(0.42)</td>
</tr>
<tr>
<td>3</td>
<td>IgG colostrums concentration (mg/ml)</td>
<td>18.3895 ±</td>
<td>19.36 ±</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6.64)</td>
<td>(6.54)</td>
</tr>
</tbody>
</table>

Means within a raw with no common superscript differ significantly (P<0.05)
Values within brackets are SD
Cortisol concentrations were significantly different (P=0.00) which was the lowest in CCL (Sub-District of Tutur), and the highest in MCL (sub-district of Purwodadi). These facts strongly indicated that cows in both locations have been considered under stressed. Daily temperature (°C) and humidity (%) in both locations showed higher than the the dairy cow’s ideal (Table 1) temperatures was 16–25°C as stated by Nicola et al. (2005). The increased of cortisol in hotter environments in this study in agreement with the study of West (2003), that hot climate changed corticosteroid hormone including cortisol. Other studies supported this finding, that glucocorticoid (GC) hormone produced more rapidly by sympathetic nervous activities or pass through hypothalamus–cortex–adrenaline axis (Selk, 1998 and Mehrzad et al., 2001). However the extend of TCS as indicated by cortisol concentration was not linearly with the climates characteristics of the locations (Table 2). These facts possibly due to cows adaptive response after long period of chronic heat stressed in sub-district of Grati. This facts were supported by the study Ronchi et al. (2001). That, under acute heat stress conditions, the initial shock causes a rise in cortisol secretion, followed by an adaptation phase under chronic conditions in which cortisol levels are reduced to normal physiological levels. Originally Friesian cows in this location were first introduced hundred years ago or since the Dutch colonization in Java, Indonesia. While dairy farming in Sub-district Purwodadi has been relatively new, or more recently than farming activities in sub-district of Grati, District of Pasuruan.

IgG Colostrums

Data IgG colostrums in Table 2, indicate non significant effect (P>0.05) of TCS, although there was a descending tendency of IgG concentration toward HCL. West (2003), previously stated that the increase of cortisol hormone caused by heat stressor, changed metabolism activities of cells in mammary glands, primarily due to the decrease of energy supplied (esp. glucose). These were an interesting facts along with argumentations could be forwarded to clarify IgGcolostrums concentrations: (1) The gradually decreased of IgG concentrations (Table 2), were not associated with pattern of average values of IgG serum, which was the lowest in MCL. This facts could be understood for indeed IgG colostrums level varies greatly (2–23%) from the total lg colostrums (Morin et al., 2001). The widely variation of IgG colostrum concentration were not merely depends on the amount transfered from the blood stream, but also partly could be determined by nutritive quality, since it’s was difficult to get good quality forage (grasses) in HCL. A previous study (Muller and Ellinger, 1981), reported a mean colostrum IgG concentration 41.2 g/L for 19 Holstein cows. So the finding of this present study (Table 2) much lower and belong to the poor colostrum quality. (2) The declined IgG concentrations in MCL and HCL were not in association with the blood cortisol concentration in the three locations (Table 2). The different by lowering lymphoid tissues activities. The results showed the number of lymphocyte cells which were responsible of producing antibodies and T-cells or killer T cells decreased. Nardone et al. (1997), stated that high air temperature over the final 2 weeks of pregnancy had lower mean concentration of IgG and IgA. The effects of stressors on livestock in particular pregnant dairy cows had been studied by Selk (1998) and she stated that poor management, induced physiological changes especially in immune system. The non significant results of IgG serum concentration (P>0.05) between CCL and HCL was interesting. It was possibly due to adaptive plasticity in the brain of cows in HCL after long period of chronic stress. This finding was in agreement with the study Arave et al. (1996), that heat stress increase the glucocorticoid levels and reduced neutrophil functions.
patterns of responses of the cows in MCL and HCL, could be explained by understanding a key mechanism involves the stress-hormone dependent translocation of immune cell in the blood to tissues and organs where an immune defense is needed. In mastitis cases, or involution phase of mammary glands, IgG are able to pass through the tight junction (transfer between the two epithelial cells), to the lumen of alveoli. There fore the amount of IgG colostrums in MLC might increase (Oliver, 1998). This finding was supported by Bambang (2003) (Dairy cooperative staff, personal communication) who had been reported that so many cases of mastitis found in Purwodadi dairy milk co-operative.

The related study (Bradely, 2002), supported this present study, that up to 4 millions somatic cells was found in case of mastitis of dairy herd under poor management than only 1–2 millions somatic cells in non mastitis cows. More recent study by Larson et al. (1990), stated, the existence of HET (heat stress) impaired the transfer of IgG from blood stream to the udder. These were the reasons why, the pattern of relation between plasma IgG concentration were not in association with colostral IgG concentration in hot and moderate climate location as compared with the pattern relation in cool (CCL).

Mean while study from Maunsell et al. (1998) reported that colostrum from multiparous Holstein cows with or without mastitis contained 78 up to 80 g of IgG/L. These finding supported the present experiment data that colostrum from mastitis cows as were found in moderate climate (MCL) higher than in hot locations (HCL).

Adaptation

The effects of TCS on IgG concentrations were also evaluated in the first and second parities. With respect to IgG colostrums and IgG serum, statistical analysis found no significant differences (P>0.05) in three locations (climates). Collier et al. (2006) stated that, after long period of suffering chronic stress, the measurable response of the cow is probably adaptation “which is an adjustment to the new or modified surrounding” Carpenter statement was related with facts that cows in HCL (Sub-district of Grati) had been bred for years since Dutch colonization in Indonesia (Zainal, 2003, Head of Sukamakmur Dairy Cooperative of Sub-district Grati, District of Pasuruan, personal communication). In this present study adaptation had been measured by interactions between parities first and second including IgG concentrations with locations (CCL, MCL and HCL).

The non significant differences of IgG concentration between parities indicated that good management practices at fist and second calving have been minimized the adverse effects of TCS, hence the cows were less susceptible to extremes temperatures. In addition, the non significant interactions or the negative adaptation in this present study, as consequence overlapping of climate characteristics (temperatures and humidity) in three locations (Table 1).

Conclusions

The results suggest that low level of IgG serum and colostrums quality as indicated by cortisol and Ig concentration in moderate and hot climates are being critical to survival rate of calves. There fore efforts must find out to elevate IgG colostrums concentration to provide adequate passive immunity and at the same time preventing calves morbidity and mortalities.

References

